Reliability & Variability

I. Statistical Expressions – What They Mean

- A. Mean (X)
 - 1. The average score (sum of scores / number of scores)
 - a) Example: 10 students, sum of all grades = 920, X = 92.0
- B. Correlation Coefficient (r)
 - 1. Commonly referred to as "correlation"
 - 2. Expresses the relationship between two variables (i.e. height, weight)
 - 3. Measured on a scale of -1 to +1.
 - a) a **-r** value indicates variables move in the opposite direction (i.e., as weight increases, height decreases)
 - b) +r = as one variable increases, so does the other.
 aa) example: a height-and-weight correlation of r = -.95 would indicate a corresponding height increase to weight decrease
 - 4. Correlations are measured in terms of strength of the relationship
 - a) .90 to 1 = very strong
 - b) .80 to .89 = strong
 - c) .60 to .79 = moderate
 - d) .40 to .59 = moderate to weak
 - e) .20 to .39 = weak
 - f) .00 to .19 = very weak (no relationship)
- C. Standard Deviation (S.D.)
 - 1. The average variance (±) associated with a mean score
 - 2. Usually expressed following a mean score
 - a) example: mean = 92.0 ± 6.5
- D. Standard Error of the Estimate (**SEE**)
 - 1. The variation (+) associated with the comparison of two mean variances (S.D.'s)
 - 2. Often expressed as a percent of the mean of two sets of scores [(SEE/X)* 100]

II. How these statistics are related to Strength Testing

- A. Reliability (r)
 - 1. Strength scores must be repeatable (consistent) from test to test.
 - 2. An r value of .98 between two strength test scores would indicate that a very strong relationship existed between the value of the score on Test 1 and the value of the score on Test 2 (i.e. the test scores are repeatable)
- B. Variability (S.D., SEE)
 - 1. Variability refers to the precision or "closeness" of a group of test scores.
 - 2. S.D. is used to express the group variability of Test 1, and the group variability of Test 2.
 - 3. SEE is used to express how close the variability of Test 1 was to the variability of Test 2 (comparison of variances)
 - 4. A strength test may be repeatable, yet still contain a large amount of variability (e.g.

isokinetic testing)

- 5. Many factors may affect the variability of strength measurement
 - a) amount of sleep
 - b) time of day
 - c) dietary intake
 - d) psychological state
 - e) condition of limbs, joints, and muscles
 - f) testing equipment
 - g) testing design, protocol and procedures (standardization).
 - h) knowledge and skill of tester
- 6. the acceptable variability for most physiological testing is <20%

C. Validity

- 1. Strength scores may be repeatable, but not necessarily valid
 - a) calibration of equipment (i.e., Smidt et al., Spine, October 1989)
 - b) limitations associated with the testing technique (isotonic, isokinetic, isometric)

III. Lumbar Extension Machine Test/Retest Reliability & Validity: Trends

A. Mean Values

- 1. Decrease when moving from flexion to extension (normal curve is descending, from flexion to extension)
- 2. Increase when moving from Day 1 to Day 2, then plateau, indicating a learning effect associated with the testing
 - a) familiarization with testing equipment, environment, and testing demands = less hesitancy on Day 2
 - b) neurological adaptation (synchronizing of neuromuscular system)

B. Correlations

- 1. Decrease when moving from flexion to extension, indicating less consistency
 - a) fatigue from multiple joint angle test protocol
 - b) difficulty of stabilizing pelvis in extended positions
- 2. Increase when moving from Day 1 to Day 2 (see A-2 above)

C. Variability

- 1. Increases when moving from flexion to extension
 - a) fatigue from multiple joint angle test protocol
 - b) difficulty of stabilizing pelvis in extended positions
- 2. Decreases when moving from Day 1 to Day 22 (see A-2 above)
- Overall variability for lumbar extension is 10-15% for healthy normal individuals, and 15-20% for the clinical population. This variation should be considered when determining whether an acute test/retest comparison is acceptable

Reliability and Variability of Isometric Lumbar Extension Strength Testing (N=136)*

	Degrees of Lumbar Flexion						
	0	12	24	36	48	60	72
D1T1 D1T9							
D1T1 vs D1T2	0.78	0.87	0.93	0.94	0.95	0.96	0.95
Mean	161.1	207.6	233.0	249.5	268.4	291.3	311.3
SEE	46.9	45.2	37.6	27.2	39.1	38.9	46.0
SEE(% mean)	29.1	21.7	16.1	10.9	14.5	13.3	14.8
OLD(70 mount)	2711		,				
D1T1 vs D2T1							
r	0.73	0.84	0.91	0.92	0.95	0.94	0.95
Mean	168.2	211.8	239.8	257.0	275.9	295.7	316.6
SEE	54.2	51.5	44.4	46.0	41.2	48.6	47.3
EE(% mean)	32.2	24.3	18.5	17.9	14.9	16.4	14.9
D2T1 vs D2T2							
r	0.94	0.94	0.95	0.97	0.97	0.98	0.98
Mean	172.4	216.0	241.7	259.0	276.5	297.8	323.7
SEE	29.0	34.0	34.4	29.5	32.6	28.7	30.9
SEE(% mean)	16.8	15.7	14.2	11.4	11.8	9.6	9.5
D2T1 vs D3T1							
r	0.81	0.92	0.94	0.96	0.95	0.94	0.97
Mean	175.5	218.5	245.4	262.0	279.2	297.2	322.9
SEE	47.7	37.2	36.4	33.0	40.9	46.4	36.4
SEE(% mean)	27.1	17.0	14.8 •	12.6	14.6	15.6	11.2

^{*}Mean and SEE values are N•m. To convert N•m to Ft./lbs., multiply the N•m value by 0.7375.

Data from Graves et al., Quantitative assessment of full range-of-motion isometric lumbar tension strength. Spine 15(4), 1990.